SEO, Internet Marketing, Search Engine Optimization, Search Engine Marketing by www.websquash.com

Network Planning


1. Introduction to GSM Network

GSM System Architecture

bandwidth
GSM Bandwidth

GSM 900 and GSM 1800 are twins 
                                        GSM 900                          GSM 1800
Frequency band             890...960 MHz                1710...1880 MHz
Number of channels       124                                  372
Channel spacing             200 kHz                          200 kHz
Access technique          TDMA                             TDMA
Mobile power              0,8 / 2 / 5 W                       0,25 / 1 W

There are no major differences between GSM 900 and GSM 1800
GSM 900 :

c030417e

GSM 1800 :

375d8d7a

Logical Channels

Same in GSM900 and GSM1800

258f1e9f
Downlink Channels

       Common Channels

zpsa187c5f3

Dedicated Channels

zps88c5bc12


Up-link Channels
       Common Channels


zps2b106b54


      Dedicated Channels
zps5a4ff728


Use of Logical Channels


zpsbfb8e10c
---> FCCH : Search for Frequency Correction Burst
---> SCH :Search for Synchronisation sequence
---> BCCH : Read System Informations
---> PCH: Listen for Paging
---> RACH: Send Access burst
---> AGCH: Wait for signalling channel allocation
---> SDCCH: Call setup
---> FACCH: Traffic channel is assigned
---> TCH: Conversation
---> FACCH: Call release

Mapping of Logical Channels
.Logical channels are mapped to physical channels
Signalling : sequences of 51 frames
Traffic : sequences of 26 frames

zps55e71aa4


The Mobile Radio Link
     Radio Wave Propagation
  The theory of wave propagation is an exact science

Mobile Telecommunications
What is special about Mobile Communications ?
  -Multi-path propagation
radio path is a miserable propagation medium
  -Limited transmit energy
transmitting power of mobiles determines service range
battery life-time
  -Limited spectrum
sets upper limit for data rates  (Shannon´s theorem)
additional effort needed for channel coding
frequencies need to be re-used ==> self- interference
  -Many mobile users

Radio Channel
zps7334adbf
Multipath propagation
Shadowing
Terrain structures
Reflections
Interference

Reflections

zpsfb29b1a1


Strong echoes can cause excessive propagation delay
uncritical, if within equalizer window
can cause severe (self-) interference if out of equalizer window

Fading(1)
zps2d9937df


Slow fading(Lognormal Fading)
shadowing due to large obstacles on the way

Fast fading (Rayleigh fading)
destructive interference of several signals
“fading dips”, “radio holes”

Fading(2)

zps36db385f

Signal Variations

zpsc079a43f


Propagation
   Free- space propagation
zpsb85baa55

signal strength decreases exponentially with distance

     Reflection

zpseb252639


specular R.
amplitude:  A --> α*A   (α < 1)
phase :  0   -->  - 0
polarization: material dependent phase shift

     Diffuse R.

zpsfea8ce2b

amplitude:  A --> α*A   (α << 1)
phase :  0                -->  random phase
polarization :  random

     Absorption
zpsf4ec8f1d

heavy amplitude attenuation      
material dependent phase shifts depolarization

    Diffraction
zpsbfd4b2a9

wedge- model
knife edge
multiple knife edges

Propagation Model
Historical CCIR- Model for radio/ TV-stations
not very accurate nor serious
Okumura- Hata
empirical model
measured and estimated additional attenuations
estimations for larger distances (range: 5 .. 20km)
don´t use for small distances ( < 1km)

Hata’s Model
Adapted for 900 MHz, Europe, different land usage classes
zps4dcf9c66
                                              morpho : additional attenuation due
                                                             to land usage classes


with
f: frequency in MHz
h: BS antenna height [m]
a(h): function of MS antenna height
d: distance between BS and MS  [km]
and
A= 69.55,  B = 26.16 (for 150 .. 1000 MHz)
A= 46.3  ,  B = 33.9   (for 1000 ..2000MHz)


Land Usage Types
Urban:                     small cells, 40..50 dB/dec attenuation
Forest:                  heavy absorption; 30..40 dB/dec;
                                  differs with season (foliage losses)
Open, farmlands:      easy, smooth propagation conditions
Water:                     signal propagates very easily ==> dangerous !
Mountain faces:    strong reflections, long echoes
Glaciers:     very strong reflections; extreme delays
                     strong interference over long distance
Hilltops:     can be used as barriers between cells
              do NOT use as antenna sites locations

Walfish- Ikegami Model
Model for urban microcellular propagation
Assumes regular city layout (“Manhattan grid”)
Total path loss consists of three parts:
line-of-sight loss   LLOS
roof-to-street loss LRTS
mobile environment losses  LMS
zps4e463af3


Antenna Characteristics
Lobes
main lobes
side / back lobes
front-to-back ratio
Halfpower beam-width (3 dB- beam width)
Antenna downtilting
Polarization
Antenna bandwidth
Antenna impedance
Mechanical size
windload

Coupling Between Antennas
zps6e4ed2cc


Horizontal separation
     needs approx. 5λ
     distance for sufficient decoupling
      antenna patterns superimposed if distance too close
Vertical separation
           distance of 1λ provides good        
           decoupling value
           good for RX /TX decoupling
Minimum coupling loss


Installation Examples

zps71e4e349

omnidirectional.: 5 .. 20m
directional : 1 ... 3m

Recommended decoupling
   TX - TX: ~20dB
   TX - RX: ~40dB
Horizontal decoupling 
distance depends on
      Antenna gain
      Horizontal rad. pattern
Omnidirectional antennas
       RX + TX with vertical separation 
       RX, RX div. , TX with vertical separation (“fork”)
Vertical decoupling is much more effective


 Directional antennas
zps69504749

sectorized sites

Antenna (down-) tilting

zps61280993
improve spot coverage

reduce interference

zpsd09aa634

Share on Google Plus

About Unknown

1 comments:

If there is any comments,Please leave a comment at here.

loading...
Sponsor by